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Dyakov (1954) and Kontorovich (1957) formulated the conditions for corrugation 
instability of shock waves as well as for spontaneous emission of sound and entropy- 
vortex waves from them. For the first time since then, it is shown here that physical 
circumstances do exist under which shocks in gases spontaneously emit sound waves. 
Such circumstances are provided by strong ionizing shocks. In order to see that, the 
coefficient of reflection of an acoustic wave from a shock is derived as a function of the 
wave’s frequency and the ionization degree. Spontaneous emission of sound occurs 
when the reflection coefficient becomes infinitely large. It is shown that the relevant 
frequency range for the occurrence of spontaneous emission is that for which the 
electrons are not in local thermodynamic equilibrium with the heavy particles. The 
special properties of acoustic perturbations behind the ionizing shock are considered 
for this frequency range and the sound velocity in a partially ionized gas is derived. In 
addition, the condition for spontaneous emission of sound is modified in order to take 
into account the difference between the electrons and heavy-particle perturbed 
temperatures. It is shown, by numerical calculations, that the criterion for spontaneous 
emission is satisfied behind ionizing shocks in argon. In particular, for an initial 
pressure of 5 Torr, the threshold for the occurrence of the spontaneous emission is 
found to be M ,  = 15. This critical value of the shock Mach number, as well as other 
calculated physical features, agree very well with those obtained experimentally by 
Glass & Liu (1978) who observed the occurrence of instability behind shocks in argon. 

1. Introduction 
The problem of stability of plane shock waves propagating in an unbounded 

medium has attracted the attention of researchers over the last forty years. Dyakov 
(1954) first formulated the problem of corrugation instability of a shock. This 
instability is manifested in the growth of sinusoidal deformations of the plane front of 
a shock. The criterion of corrugation instability was obtained by Dyakov in the form 
of inequalities for a certain parameter h, which contains the derivative of the specific 
volume with respect to the pressure along the shock adiabatic. He also found the range 
of values of the parameter h in which small acoustic and entropy-vortex perturbations 
in the form of sinusoidal two-dimensional waves can be emitted by the shock. This 
phenomenon was termed spontaneous emission. 

The critical value h, of the parameter h corresponding to the occurrence of 
spontaneous emission was determined by Kontorovich (1957, 1959). Dyakov and 
Kontorovich treated this effect as a resonant reflection when the reflection coefficient 
9 of the acoustic wave from the shock takes an infinitely large value for a certain 
direction of the wave vector of the incident wave. 
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Although in the case of spontaneous emission the eigenoscillations do not grow in 
time, their occurrence undoubtedly indicates that a real flow behind the spontaneously 
emitting shock is unstable. The reason for this instability is in the fact that any real 
system has a finite size, so that the initial energy of the shock is finite. Therefore, a 
permanent loss of the shock’s energy due to the continuous radiation of outgoing 
waves will result in reorganization of the initial flow. In principle, even the condition 
191 > 1 may be considered as an indication of instability, since in this case the shock 
is working as an amplifier of incident waves. As was shown by Fowles (1981), if 
193’1 > 1 for a certain angle of incidence, then some other angle of incidence exists, for 
which 9 = GO. 

Neither corrugation instability nor spontaneous emission can occur in a perfect 
polytropic gas with a constant adiabatic index y. As regards to the shock instabilities 
in real gases, since the formulation of the classical Dyakov-Kontorovich criteria, no 
appropriate physical conditions have been found under which the criteria are satisfied. 
It would be expected that strong dissociating or ionizing shocks might be spontaneously 
emitting according to the classical criterion due to the non-monotonic forms of their 
shock adiabatics. Such shock adiabatics were obtained in experiments by Griffiths, 
Sandeman & Hornung (1976) with ionizing shocks in argon and with dissociating 
shocks in carbon dioxide. These authors observed various forms of shock-induced 
instabilities. However, even for non-monotonic shock adiabatics sampling numerical 
calculations performed on the basis of the classical criterion of spontaneous emission 
did not confirm their existence, although in many cases the values h and h, were close 
(Griffiths et al. 1976; Kuznetsov 1989). 

The development of instabilities behind strong shocks in inert gases has been 
observed in shock-tube experiments with argon (Glass & Liu 1978) and krypton (Glass, 
Liu & Tang 1977). An interferometer having a laser light source was used in the 
experiment, and the simultaneous interferograms for two different wavelengths made 
it possible to determine both gas density p and electron concentration n, in the flow. 
Spatial oscillations in the distributions of p and n, were observed in these experiments 
in the region behind the relaxation zone when the shock Mach number was sufficiently 
large: M ,  2 15. 

The goal of present paper is a self-consistent consideration of the problem of 
stability of ionizing shocks in pure monatomic gases. As will be shown, such a 
consideration should take into account the ionization kinetics influencing the properties 
of acoustic waves in a partially ionized plasma produced by a strong shock. The 
investigation of the instability is based on the analysis of the reflection coefficient B 
with an emphasis on the condition of resonant reflection. However, the quantity 9 
derived in the current work actually differs from the expression for 9 given in previous 
works. Thus, the dependence of the ionization degree upon the electron temperature 
and the gas density influences not only the form of the stationary shock adiabatic, but 
also the form of the dynamic relations between the perturbations of the various 
electron gas parameters. 

A modification of the reflection coefficient leads to a new definition of the parameter 
h that determines the relationship between the density and pressure perturbations 
behind the ionizing shock. The critical value h = h, also is changed. The reconsidered 
criterion for spontaneous emission predicts the existence of a critical value of the shock 
Mach number M I ,  beyond which spontaneous emission should occur. This result is in 
qualitative agreement with existing experiments. 

The paper is organized as follows. In $2 the formulation of the problem of the 
interaction of a shock wave with small perturbations is given. Different types of 
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elementary two-dimensional waves are described, and the decomposition of a general 
problem into four independent problems is discussed. The reflection coefficient 8 is 
defined for two-dimensional acoustic waves varying in time as exp (- iot). An explicit 
dependence of B on the frequency w is presented and employed for obtaining the 
classical criterion of spontaneous emission. The advantages of introducing the 
frequency-dependent representation %(w) in the complex o-plane are discussed. In 
particular, it is shown that the classical criteria for corrugation instability can be 
obtained from the condition of resonant reflection %(o) = co for acoustic waves of a 
special type. These waves grow in time and decay exponentially in space in the direction 
of their propagation. 

Section 3 contains the description of ionizing shock adiabatics, where the concept of 
a unified shock that consists of the gasdynamic shock and the relaxation zone is 
employed. The conservation laws for an ionizing shock are considered, and a system 
of relations for determining a unified shock adiabatic is given. This system includes the 
Saha equation for the degree of ionization. 

An implicit parametric form of the shock adiabatic equation is presented in an 
analytical form. It is shown that the dependence of the density upon the pressure 
representing the ionizing shock adiabatic always possesses a maximum corresponding 
to the maximal degree of compression produced by the shock. The general 
considerations are supplemented by results of numerical calculation of an ionizing 
shock adiabatic in argon. 

In addition, a mutual arrangement of the ionizing shock adiabatic, the gasdynamic 
shock adiabatic, and the Rayleigh line in the pressure-density plane is considered in 
this section. The significance of the Rayleigh line for a true choice of the physically 
reasonable solution describing the equilibrium state behind the relaxation zone is 
discussed. 

Section 4 gives the analysis of small perturbations in a partially ionized gas behind 
the relaxation zone. The influence of ionization by electron-atom collisions on the 
sound velocity and the reflection coefficient is considered. It is shown that acoustic 
properties of a partially ionized gas depend not only on the frequency w ,  but also on 
the ionization degree 01 as well as on partial derivatives of the latter with respect to the 
gas density and temperature in the equilibrium state. In addition, the revised criterion 
for spontaneous emission is obtained for ionizing shocks. 

In 95 the criterion for spontaneous emission is examined numerically for strong 
shocks in argon. The existence of threshold for the occurrence of spontaneous emission 
with respect to the shock Mach number M I  is found and the results of the 
corresponding numerical calculations are presented. The calculated critical value of the 
Mach number is in good agreement with the experiment of Glass & Liu (1978). 

Section 6 contains a discussion of the main results including a comparison of the 
proposed theory with experiments, comments on the validity of the model of ionizing 
shocks, and justification of the assumptions that are made in the description of the 
acoustic waves in a partially ionized gas. 

2. Reflection coefficient for an acoustic wave 
2.1. Interaction of small perturbations with a shock 

In analysing the interactions of small perturbations with a shock wave, it is convenient 
to describe these interactions in the frame of reference X moving with the normal 
velocity of the unperturbed shock. The system X always can be chosen so that the gas 
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FIGURE 1. Sketch of the interaction of a shock with small Perturbations. S is the shock surface: -, 
unperturbed shock; ----, perturbed shock; k-, k+ and k” are the wave vectors of the incident 
acoustic wave, reflected acoustic wave and entropy-vortex wave, respectively. 

velocity ahead of the shock is directed normally to the latter as is shown in figure 1. 
Considering small perturbations in the form 

(2.1) 
where k ,  is the projection of the wavevector k on the unperturbed shock plane S, we 
choose the y-axis of the coordinate system X to be directed along k,, so that in (2. l), 
k, . r  = k,y .  

exp [i(k, x + k ,  . r - wt)],  

Following Landau & Lifshitz (1987), we assume the conditions 

M ,  = &/cl > 1 ,  M ,  = < / c Z  < 1. (2.2) 
Here and below the subscripts 1 and 2 refer to the states ahead of the shock and behind 
it, respectively. In (2.2), c is the sound velocity, Vis the gas velocity, and M is the Mach 
number. Conditions (2.2) are always satisfied for shocks in a perfect gas. For real gases 
these conditions should be imposed in accordance with the requirement of the 
evolutionarity of a shock wave. 

In region 1 we consider a uniform stationary flow satisfying the system of Euler 
equations for an ideal, non-viscous gas. In region 2 these equations should be 
supplemented with the relations describing the electron gas. Generally, for a shock that 
may induce chemical reactions of various types, the flow in region 2 should be 
described by the equations of high-temperature gasdynamics (Anderson 1989). Also, 
we assume that in region 2 the gas is in a chemical equilibrium and the unperturbed 
flow in this region is stationary and uniform. This allows us to consider the solutions 
of the type (2.1) with k = coiist in both regions 1 and 2. The concept of a shock wave 
that is employed in the present consideration includes the usual gasdynamic shock and 
the relaxation zone behind it, in which the electron density increases to the value 
corresponding to the condition of ionization equilibrium. The relaxation zone is 
terminated by the equilibrium region 2 as is shown in figure 2. In analysing the 
interactions of small perturbations with an ionizing shock we may replace the shock 
and the relaxation zone by a single surface of discontinuity. That is admissible if the 
wavelength is larger than the characteristic thickness A of the relaxation zone : 

A < l/lkzl. (2-3) 
When the influence of viscosity and heat conduction on the perturbations are 

neglected in both regions 1 and 2, the perturbations are described by equations of 
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FIGURE 2. Behaviour of the gas temperature T, gas density p and electron concentration n in the 
relaxation zone R.  Subscripts I ,  F and 2 refer to the initial state, the frozen and equilibrium states 
behind the shock, respectively. 

hyperbolic type. Then in the high-frequency limit (w +a) the dispersion relation for 
acoustic waves takes the form 

The high-frequency sound velocity appearing in (2.4) is known in the dynamics of real 
gases as frozen velocity (Anderson 1989). This term emphasizes the fact that the fast 
acoustic oscillations cannot perturb the gas mixture species when the characteristic 
time of the transition to chemical equilibrium becomes very long compared to the 
period of oscillations. 

When conditions (2.2) are violated, the problem of small perturbations - shock wave 
interactions regarded as an initial-boundary problem becomes ill-posed. For given 
initial perturbations, the solution that should describe their evolution for t > 0 either 
does not exist, or cannot be uniquely determined. Such shock waves, called non- 
evolutionary (Landau & Lifshitz 1987), are not considered here. 

If small perturbations are absent at t = 0 in the supersonic region 1, they never can 
occur in this region at t > 0. On the other hand, in the subsonic region 2 the 
perturbations may appear (even if they were absent initially) in the form of acoustic 
and entropy-vortex waves coming from the supersonic region 1 after their transmission 
through the shock. 

A general problem of the interaction of a shock with small perturbations can be 
decomposed into four separate linear problems, so that each of them may be con- 
sidered independently of the others. These problems refer to the following situations : 

(a) An acoustic wave excited in the subsonic region 2 propagates towards the shock 
and interacts with it, resulting in the appearance of a reflected downstream acoustic 
wave and a generated entropy-vortex wave. Both these waves propagate in region 2 
away from the shock as is shown in figure 1. 

(b) A downstream acoustic wave excited in the supersonic region 1 interacts with the 
shock and generates a downstream acoustic wave and an entropy-vortex wave 
propagating in region 2 away from the shock. 

5 F L M  2 1 5  
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(c) The situation is analogous to (b) with the distinction that the incident acoustic 
wave propagates upstream in region 1. Since the group velocity of this wave is directed 
downstream, the wave will interact with the shock. (Such a situation may occur in a 
shock-tube experiment when the shock and the sound wave propagate in an immovable 
gas before the shock in the same direction, while the shock overtakes the wave.) 

(d)  An entropy-vortex wave is excited in region 1. This wave interacts with the 
shock and generates a downstream acoustic wave and a new entropy-vortex wave in 
region 2. 

In this section we shall neglect the influence of the relaxation processes behind the 
shock on the behaviour of small perturbations. Then, relation (2.4) may be used not 
only in the high-frequency limit but for arbitrary frequencies. The corresponding 
dispersion relation for entropy-vortex waves is 

w = k * V .  (2.5) 
We denote the upstream and downstream acoustic waves, and the entropy-vortex 

waves as d-, d+ and d@), respectively. An acoustic wave is characterized by a single 
variable, say the pressure perturbation, Sp. For such a wave, the entropy and vorticity 
perturbations are zero, while the velocity perturbation is expressed in terms of Sp as 
follows : 

The upper and lower superscripts in (2.6) refer to the upstream and downstream waves, 
respectively. In the relations (2.4)-(2.6) k and w are generally complex-valued 
quantities. An entropy-vortex wave is determined by three independent variables, the 
perturbation of the entropy SS, and the perturbation of the vorticity Ss1. The latter has 
two independent components due to the relation n.iYs1 = 0. For an entropy-vortex 
wave, the pressure perturbation is zero, while the density and velocity perturbations are 
expressed in terms of SS and 652 as follows: 

We concentrate below on problem (a), which is formulated as follows. Find the 
solution of the linearized gasdynamic Euler equations satisfying the linearized 
conservation laws at the shock surface and the conditions 

(2.8) I 6p1 = 0, 8Sl = 0, 652, = 0 (x < O), 
Sp2 = Sp++Sp- * 0, SS, * 0, SQ, * 0 (.x > 0).  

The various perturbations in the subsonic flow may be written in the form 

} (2.9) 
&pi = C* exp [i(k: x+k,y-wt)] (C' = const), 

{SS,SQ} = {So,Qo} exp [i(kg)x+k,y-wt)] (So = const, Q, = const). 

For given values of w and k,, the longitudinal components of the wave vectors of 
these three waves are determined by the expressions 
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Here w, is a critical (cutoff) frequency for two-dimensional acoustic waves. For a given 
value of k,, the acoustic waves with real w can propagate in a subsonic flow only if 

For a given amplitude of the incident wave C-, the amplitude of the reflected 
w2 > w,". 

acoustic wave is determined by 

C: = W(ky ,  w )  C-, (2.11) 

where 9 = (8p~/8p,),=, is the reflection coefficient. In addition to its dependence on k ,  
and w ,  the reflection coefficient 9 also depends on the specific properties of the shock 
adiabatic. 

2.2. Frequency-dependen t represen tat ion of the reflection coeflcien t 
The problem of determining the reflection coefficient for shocks in a gas with arbitrary 
form of shock adiabatic was considered by Kontorovich (1959). The first attempt to 
derive this coefficient for two-dimensional waves was made by Brillouin (1953). As is 
mentioned in Kontorovich's work, Brillouin did not take into account the sinusoidal 
perturbations of the shock surface. The contribution of the latter to the value of W may 
be of the same order as the other perturbations behind the shock. Kontorovich (1959) 
derived a system of relations from which the expression for W can be obtained in terms 
of the angles between the following pair of vectors : {k-,  e,}, {k+, e,} and {k-,  V;}. Here 
e, is the unit vector in the x-direction and V; is the group velocity of the incident 
acoustic wave, 

V; = V,+c,n,. (2.12) 

Although an explicit formula for W was given by Kontorovich only for the case of 
normal wave incidence (k ,  = 0), he took into account an oblique incidence when he 
considered the region of parameters in which 9 becomes infinitely large for a given 
direction n;. 

The procedure for obtaining the expression for 9 is based on the linearized 
equations of gasdynamics and the linearized Rankine-Hugoniot relations. These 
relations can be found in Dyakov (1954) and Kontorovich (1959), as well as in Landau 
& Lifshitz (1987). Modifying the approach developed in these works, we employ the 
frequency-dependent representation of the reflection coefficient. Such a representation 
has the form 

(2.13) 

where 

7 = PZlP1, p = PnIP13 B = P1 v, = Pz VZ- I 
Here 7 is the density ratio, and P is the pressure ratio for the quantities taken at 
different sides of the shock, 2 is the mass flow rate across the shock. The variables 7 
and P are connected through 

7 = VfP)? (2.15) 

called the shock adiabatic (or the Hugoniot curve). The quantity 7 also depends on 
some dimensionless parameters characterizing the initial state of the gas ahead of the 
shock, as well as the parameters characterizing the chemical reactions when they are 
induced by the shock. 

5 - 2  
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As is seen from (2.13), the reflection coefficient 9 ( w ,  k,) actually depends only on the 
ratio w/k,. Instead of this ratio one may use any function depending on w/k,, for 
instance the incidence angle of the wave d-. Thus, in the work of Fowles (1981), who 
considered the reflection of weak discontinuities from a shock, the reflection coefficient 
was calculated in terms of the angle of incidence. 

An explicit frequency-dependent representation of 9 (2.13) is convenient in solving 
various boundary-value problems, which include calculating the reflection of acoustic 
waves from shocks as a necessary step in obtaining the solution. For example, one such 
problem is the investigation of the spectrum of eigenperturbations in the subsonic 
region between the shock and some other reflecting surface (Rutkevich & Mond 1992). 
The advantages of using the dependence .%(w, k,) become evident when q is a complex- 
valued quantity and, therefore, a simple geometrical concept of the angle of incidence 
fails. 

In the next subsection we show that the representation (2.13) is useful in deriving the 
conditions for spontaneous emission and corrugation instability. 

2.3. Singularity of the reflection coeficient as an indication of spontaneous emission 
and Corrugation instability 

In the work of Dyakov (1954) spontaneous emission of acoustic waves from a shock 
was identified by the existence of solutions given by (2.9), for which C- = 0 and 
C+ + 0 at certain real values of w ,  k+ and k@) .  Such solutions that represent outgoing 
waves satisfy all the boundary conditions. In accordance with (2.1 l), this can exist only 
if 92 = co. Therefore, the phenomenon of spontaneous emission may be treated as a 
special case of reflection where 92 = co. The criterion of spontaneous emission obtained 
by Kontorovich (1959) has the form 

1-(1+7)M,2 
l+(v- l )M; .  

h, < h ,< 1 +2M2,  h, = (2.16) 

Here, h is the parameter defined in (2.14), and h, is the critical value of h corresponding 
to the threshold of spontaneous emission occurrence. Condition (2.16) can be derived 
easily from the requirement 92 = CQ with the aid of (2.13). Assuming that the 
denominator on the right-hand side of (2.13) equals zero, we get the relation 

(1 - M i )  [q2 + 2M2 q(q2 - 1)1'2] - 7Mz" 
(1 -M,2)q2+7Mi 

h = H(q, M,) (2.17) 

For outgoing waves with real values of w and k+, the parameter q satisfies 
l < q , < c o .  (2.18) 

Consider the right-hand side of (2.17) as a function of q. This function is 
monotonically increasing, while H = h, at q = 1, and H+ 1 + 2 M 2  as q+co. The 
function H(q) is shown schematically in figure 3(a). 

Considering now relation (2.17) as an equation for determining q, we see that for a 
given value of h, a unique solution q = Q(h) with 1 ,< 4(h) < co exists if and only if h 
satisfies the condition h, < h < 1 + 2M2. This is exactly condition (2.16). For each value 
of h belonging to the interval (2.16), the value d(h) determines a unit vector n+ and a 
group velocity V,' of the emitted acoustic wave: 

V,' = (~+c ,n~>e ,+c ,n , e , ,  

(2.19) 

Relations (2.19) can be derived from (2.10). 
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FIGURE 3. (a) Schematic view of the dependence h = H(q). Intersection of the curve H(q) with the 
straight line h = const determines the value q(h) corresponding to an infinite value of the reflection 
coefficient for a real value of w.  (b)  Schematic view of the dependence h = G(s). The value s(h) 
corresponds to an infinite value of the reflection coefficient for a purely imaginary value of w. 

The limiting case h = h, refers to the spontaneous emission of a wave with the critical 
frequency w = 0,. Such a wave propagates parallel to the shock surface, as follows 
from (2.19), i.e. Vlz = 0 for q = 1. The upper boundary of the interval (2.16), h = 
1 + 2M,, corresponds to the spontaneous emission of a strictly one-dimensional wave : 
in the limit q +co we obtain n,+ = 0 and V,’ = (& + c,) e,. 

Note that the condition for resonant reflection should be the same as the condition 
for resonant transmission of acoustic and entropy-vortex waves propagating from the 
supersonic region 1. It is evident that the solution representing only one outgoing wave 
d+ is the solution of any of the four problems (a-d) formulated in the previous 
subsection. 

The corrugation instability of a shock wave was defined by Dyakov as the existence 
of solutions of the type of (2.9), for which 

C-=O, Imw>O, Imk:>O, Imk?)>O, Imk,=O. (2.20) 

Such solutions represent the acoustic and entropy-vortex perturbations that decay in 
space away from the shock and grow in time. Dyakov’s criteria for corrugation 
instability have the form 

h < - 1  or h > 1 + 2 M 2 .  (2.21) 
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Therefore, there are two regions of the h-axis where the corrugation instability may 
occur. We will show below that like the spontaneous emission phenomenon, the 
corrugation instability may be interpreted as a result of infinitely strong reflection. The 
waves that undergo such an infinite reflection belong to a special class of travelling 
waves. Let us consider the acoustic waves d &, for which the perturbations Sp' are 
described by (2.9) with a purely imaginary value of w = ih. Assuming h > 0, we obtain 
from (2.10) 

(2.22) 

The quantities k5 determined by (2.22) are purely imaginary, while X+ < 0, x. > 0. 
Therefore, the perturbations (2.9) take the form 

Sp' = C' exp (ht+X+x+ik,y). (2.23) 

The solution Sp- represents a wave that grows both in time and in the positive x- 
direction. Actually this wave propagates with the velocity u- = - h / ~ -  < 0 and, 
therefore, moves in the negative x-direction. The solution Sp+ represents a wave moving 
in the positive x-direction with the velocity u+ = -h/x+ > 0. Thus, both acoustic 
waves d-,d+ decay in the directions of their propagation. Let us suppose that in 
region 2 there is an external source of perturbations of sufficiently large distance from 
the shock. Let such a source create a pressure perturbation growing in time as exp At .  
We can say that the wave Sp- defined in (2.23) represents the part of the exciting signal 
that can reach the shock. After reflection of the wave 6p-, the reflected wave Sp+ will 
propagate from the shock, decaying in space and growing in time. 

In accordance with the definition of the corrugation instability, the latter provides 
for the existence of the outgoing wave d +  without an incident wave d-. Therefore, 
we can expect that under the conditions (2.21) the reflection coefficient 9 ( w , k y )  for 
waves having the form (2.23) takes an infinitely large value at some point of the 
complex w-plane belonging to the positive imaginary semiaxis (w = ih). To check this 
proposition we set w = ih in the formula (2.13) for 9 and consider the conditions under 
which the denominator on the right-hand side of (2.13) equals zero. We obtain the 
following relationship : 

h = G(s, M21, (2.24) 

(1 - M i )  [s2 + 2M, S(S' + 1)"2] + 
where G(s, M,) = H( - ig, M2) = (1 - M i )  $2 - 7&1,2 

For real values of s = h/cc,,, the function G is real. A typical form of the dependence 
G(s) is shown in figure 3 (b). One can see that G decreases monotonically from the value 
G = - 1 to G = - co when s varies within the interval (O,s,), and G decreases 
monotonically from the value G = + 00 to G = 1 +2M2 when s varies within the 
interval (s,, co). The value s = s* = [y/( 1 - M,2)]"' M ,  represents a simple pole of the 
function G(s). It is evident that there exists a unique value of s in the interval (0, co) 
satisfying (2.24) if h belongs to one of two regions of corrugation instability (2.21). 

For a given value of k,, the growth rate h in the first region of corrugation instability 
(h < - 1) increases from the value h = 0 at h = - 1 to the value A, = w,s, at h = - 00. 
In the second region (h > 1 +2M2), h undergoes the same variation (from h = 0 at 
h = 1 + 2 M 2 t o h , = w , s , a t h = c o ) .  

Thus, we have found that for waves of the form (2.23) the reflection coefficient 9 
becomes singular in the region of corrugation instability. A further consideration 
shows that there are no other growing waves except (2.23) (say, waves with Im w > 0 
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and Re w =k 0), for which 2 can be made infinitely large. In this connection we note 
that for all real values of w satisfying (2.18), the behaviour of 9 is regular in both 
regions of corrugation instability and, furthermore, 0 < 9 < 1 in the first Dyakov 
region (h < - 1). Therefore, it would be impossible to predict the corrugation 
instability in this region considering the reflection of periodical acoustic waves. It 
should be noted, however, that within the second Dyakov region (h > 1 +2M2) the 
value of 191 may become greater than 1 for periodical acoustic waves. 

3. Shock adiabatics for ionizing shock waves 
3.1. Consequences of the conservation laws 

Consider the propagation of a plane shock wave with constant velocity in a cold non- 
ionized monatomic gas. When the shock Mach number M ,  is sufficiently large, a 
partially ionized plasma is created behind the shock. The concentration of electrons 
increases in the relaxation zone and reaches a constant value in the equilibrium region 
as is shown in figure 2. The kinetics of the ionization depends on the type of gas as well 
as on the initial state of the gas ahead of the shock. In a certain thin layer directly 
behind the shock the ionization starts with atom-atom collisions. When the ionization 
degree grows, electron-atom collisions dominate the ionization process and play a 
crucial role in further increasing the electron density. A discussion of the effects of the 
various elementary processes on the ionization relaxation behind strong shock waves 
can be found in the review by Biberman, Mnatsakanyan & Iakubov (1970). 

In order to obtain an equation for the shock adiabatic we use the relationships that 
connect the values of the parameters of the gas in regions 1 and 2: 

e,+'+--I. P v2 = ez+-+-+Q. Pz vz" 
P1 2 Pz 2 

(3.3) 

Here e is the internal energy of the gas per unit of mass, and Q > 0 is the loss of energy 
due to ionization per unit of mass. Relations (3.1)-(3.3) represent the conservation of 
mass, momentum and total energy of an ionizable gas passing through the shock and 
the relaxation zone. For a pure monatomic gas, the quantities el, ez and Q are written 
in the form 

(3.4 a-c) 

with y = CJC, = 5/3. Here I is the first ionization potential, N is the Avogadro 
number, ,u is the atomic weight, and a is the degree of ionization defined as 

a = n,/(n, + na), (3.5) 

where n,, ni and n, are the concentrations of electrons, positive ions, and neutral atoms, 
respectively. Under the equilibrium condition, the equality n, = n, is satisfied. 

Relations (3.4) are true for the simplest model of an ionizing shock that neglects the 
excitation of electron levels of atoms and takes into account only the first ionization 
of the atoms. Such an approach is both illustrative and convenient in analysing the 
shock adiabatic. The restrictions of this model are discussed in 96. 

The expressions for ez given by (3.4b) can be justified as follows. In the equilibrium 
state the mean energy per particle, regardless of its charge and mass, equals :kkT,, where 
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T,  is the temperature and k is the Boltzmann constant. Therefore, the initial energy c2 
per unit of mass is determined as 

c2 = ;kkT,(n, + n, + na2>/p2. 

The total pressure in the mixture of atoms, electrons and ions is determined by the 
formula 

p r  = kT,(n, + n, + na2). 

Comparing the last two formulae, we get c2 = $.Jp2. 
To obtain an equation describing the ionizing shock adiabatic we express the degree 

of ionization in terms of the thermodynamic parameters using the Saha equation. The 
latter presents the condition of an ionization equilibrium and has the following form 
(Mitchner & Kruger 1973): 

Here me is the mass of an electron, and h is Planck’s constant. The factor g in the 
Saha equation is determined as 2C,/C,, where Ci and C, are the statistical sums of the 
ion and the atom, respectively. The quantity g usually is of order 1-10. Thus, for argon 
g = 11 can be assumed in the range of temperatures T < 15000 K (Mitchner & Kruger 
1973). 

After the transition to the dimensionless variables 

0 = T,/T,? 3 = P J P I  (3.7) 

the solution CL of the quadratic equation (3.6) is presented in the form 

(3.8) I a(r,O) = - +$ + (&b2 + $)”2, 

11. = b(p,, 03’2r-1 exp (-C/20)7 s = 21/(kT,), 
b(pl ,  r,) = g ( m , / 2 ~ h 2 ) 3 f 2 ( k r , ) 5 ’ 2 / p 1 .  

Using the conservation laws (3.1k(3.3) together with the relations (3.4), (3.7), we 
obtain the equation of the shock adiabatic 3 = q(P) in the implicit parametric form 

where the function a(y,0) and the parameter 5 are defined in (3.8). The contribution 
of the ionization degree CL to the dimensionless pressure P reflects the contribution of 
the electron pressure pe  in the total pressure of a partially ionized plasma behind the 
shock. 

3.2. Non-monotonic behaviour of the ionizing shock adiabatic 
Relation (3.9) determines an implicit function r(P). It is evident that r (P)  represents a 
single-valued function, since the right-hand side of (3.9) is a monotonically decreasing 
function of 7 for an arbitrary fixed value of P. For the case of a shock propagating in 
a cold ionizable gas, r(P)  has a maximum at a certain value P = P,. In the range of 
values P = 0(1), r(P) is growing, since it is close to the classic shock adiabatic for a 
regular gas, while in the range P + 6 we get the asymptotic formula 

3 = 4(1 + s / n  (3.10) 

which shows that 7 should decrease when P is increased. Therefore, q(P) should have 
a maximum. 

In obtaining the asymptotic formula (3.10) it was assumed that + 4. This inequality 
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FIGURE 5. Ionizing shock adiabatic for argon with = 300 K, p 1  = 5 Torr. 

is indeed satisfied. Thus, for = 300 K, the values of 6 are of order of lo2 for alkali 
metal vapours and of order of lo3 for inert gases. For example, in caesium and argon, 
the values of 6 are 301 and 1219, respectively. 

In spite of the fact that the denominator on the right-hand side of (3.9) vanishes 
along a certain line in the (r,P)-plane, the dependence r ( P )  determined by (3.9) is 
regular and bounded from above. If 7 were singular at some value of P, then there 
would be a contradiction because in accordance with (3.8), a+O when ~ + m .  
Therefore, the denominator in (3.9) cannot vanish simultaneously with an infinite 
increase in the quantity 7. 

A typical form of an ionizing shock adiabatic is shown schematically in figure 4 
(curve 1). The numerical solution of (3.9) for argon is presented in figure 5.  

The occurrence of a decreasing section on a shock adiabatic in the presence of 
endothermic phase transitions, such as dissociation or ionization, can be explained as 
follows. For a sufficiently high intensity of the shock, there is a considerable relative 
drop of the temperature in the relaxation zone (TF-TJ/TF (here T, is the frozen 
temperature behind the gasdynamic shock) associated with the losses of thermal energy 
by an endothermic reaction (see figure 2). This leads to an increase in the gas density, 
while pz exceeds the maximal value of density which is attainable in a perfect gas, 
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p2 = 4p,. On the other hand, for very large values of the shock intensity (P 9 c), the 
frozen temperature TF is so large, that the ratio TJT, remains close to unity in spite 
of the loss of energy in the relaxation zone. It means that pz should tend to the value 
4p, as if the ionization were absent. Thus, we obtain the decreasing dependence y(P) 
described by the asymptotic expression (3.10). 

It is known that the degree of compression produced by ionizing shocks may 
considerably exceed the classic gasdynamic limit 7 = 4. Such higher compression 
degrees were indeed observed by Griffiths et al. (1976) and Glass & Liu (1978), and 
obtained in the numerical calculations of the non-equilibrium region behind the 
gasdynamic shock in argon (Glass & Li 1978; Kaniel et al. 1986; Liberman & 
Velikovich 1986). Analysing the equations that describe the structure of relaxation 
zone, Liberman & Velikovich noticed that the degree of compression from shocks can 
reach very high values, although they did not consider the global properties of the 
ionizing shock adiabatic. In our numerical calculations the value ymaz = 12.3 was 
obtained for argon at q = 300 K andp, = 5 Torr. The lowering ofp, resulted in larger 
values of the compression degree. 

We also note that the evolutionarity condition M2 < 1 is satisfied along the shock 
adiabatic everywhere. 

3.3. The Rayleigh curve and the relaxation zone 

The process of transition from the initial gas state 1 to the final equilibrium state 2 may 
be depicted in the (P ,  q)-plane in the following way. For a given Mach number ahead 
of the shock M,, the state of the gas immediately behind the gasdynamic shock (the 
frozen state) is given by the point F which represents the intersection of the usual shock 
adiabatic (curve 2 in figure 4) and the Rayleigh curve determined by the equation 

(3.1 1) 

with y = g. The hyperbolic curve (3.11) represents all states in the (P, ?)-plane which 
are attainable in a stationary flow from an initial state 1 when the mass flow rate2’ and 
the total momentum p +gV are conserved. These two conservation laws are satisfied 
across the gasdynamic shock as well as across the relaxation zone. Therefore, the final 
state 2 of a partially ionized gas is determined by the point A,, at which the Rayleigh 
curve 3 intersects the ionizing shock adiabatic as shown in figure 4. The consideration 
of the ionizing shock transition in the (P, 7)-plane is analogous to the representation 
of a detonation wave given in Landau & Lifshitz (1987), who considered the 
detonation shock adiabatic in the plane (P, V )  where V = 1 / ~  is the normalized specific 
volume. In the plane (P ,  V )  equation (3.1 1) describes a straight line termed the 
Rayleigh line. Like the detonation shock adiabatic, the ionizing shock adiabatic, 
generally, does not pass through the initial point A, if the shock propagates in a 
preheated gas with non-zero initial ionization degree a,. In a cold gas with q < 300 K, 
it can be assumed that a1 = 0. Then both curves 1 and 2 in figure 4 pass through the 
point A,. This condition is satisfied for the shock adiabatic given by (3.9), though in 
figure 5 the initial section of shock adiabatic going out from the point P = 1, ‘1 = I is 
not shown. 

The significance of the Rayleigh curve in analysing the shock transition to the 
plasma state is in the fact that the motion from F to A, along this curve shows the 
direction in (P ,  T)-plane for which the changes of the variables 7 and P in the relaxation 
zone are consistent with conservation laws for mass and momentum. Generally, the 
Rayleigh curve may intersect the ionizing shock adiabatic in several points if the latter 
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has several maxima. An oscillating character of y(P) occurs in the range of very high 
values of P where the ionization of single- and multi-charged ions occurs (Kuznetsov 
1989). Within the framework of the model adopted, only one maximum on the shock 
adiabatic exists and only one point on the A,-type (see figure 4) belongs both to the 
shock adiabatic and to the Rayleigh curve. 

The existence of a unique intersection point A, does not always mean that the state 
A, really can be reached. For the realization of this state, it is necessary that the 
direction of variation of the parameters y and P along the section of Rayieigh curve 
FA, is confirmed by the stationary solution that describes the relaxation zone. To 
justify the transitioii FA, one has to check that the final gas temperature T,  at the point 
A, is lower than the frozen temperature TF at the point F, as was predicted in 
calculations by Glass & Liu (1978) and Kaniel et al. (1986). For the ionizing shock 
adiabatic described by (3.9), the requirement TF > T,  is satisfied, so that the transition 
A, FA, is consistent with real structure of the relaxation zone. 

4. Acoustic waves in a partially ionized gas 
4.1. Perturbations in the equilibrium region behind the shock 

In analysing the conditions for spontaneous acoustic emission from an ionizing shock 
the simple relationship between the pressure and the density perturbation 

5kT 
sp = ---/I, 

3 ma 

where ma is the atomic mass, can no longer be used for acoustic waves in a partially 
ionized plasma. When an acoustic wave propagates in such a plasma, the density and 
temperature perturbations of the heavy particles (atoms and positive ions) give rise to 
perturbations in the ionization degree Sa and in the electron temperature 6T,. Although 
all species of the plasma have the same unperturbed temperature in the equilibrium 
state in region 2, the perturbations of the electrons’ temperature ST, and of the heavy 
particles’ temperature 6T are different. This difference may be considerable when the 
period of the acoustic oscillations is less than the characteristic time of the energy 
exchange between the heavy particles and the electrons. 

The full system of linearized equations that describe small perturbations in a 
partially ionized plasma is very cumbersome. Since our purpose is in finding the range 
of parameters for which the resonant reflection (R = co) may occur, we select below 
only the principal mechanisms that are responsible for this phenomenon. 

The steady state behind the ionizing shock represents a uniform flow with V ,  = V, 
n, = ni and T,  = T. We consider now perturbations whose frequency, W ,  satisfies the 
following conditions : 

W < 2Uionr W 9 V,,  W?M < 1, W V , ,  W 4 V,/d, (4.2 a-e) 

where vion is the characteristic frequency of ionization by electron impact, uB is the 
inverse of the characteristic time for the energy transfer from heavy particles to 
electrons, 7M is the Maxwellian relaxation time for the electric charge density, u, is the 
effective frequency of momentum transfer from heavy particles to electrons, and d is 
the characteristic lengthscale of the density variations within the relaxation zone. 
Conditions (4.2 b)  and (4.2d) can be simultaneously satisfied since 
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Condition ( 4 . 2 ~ )  means that the period of the acoustic oscillations is much larger 
than the time of transition to the ionization equilibrium determined by the actual 
electron temperature T,. As a result, the Saha equation (3.6) can be employed in order 
to calculate the perturbed electron concentration. 

As a result of condition (4.2b) the energy exchange between the electrons and the 
heavy particles due to elastic collisions can be neglected in the energy equation of the 
latter. However, further assumptions are needed in order to neglect that term in the 
energy equation for the electrons, as will be discussed below. 

Conditions ( 4 . 2 ~ )  and (4.2b) are of crucial importance to the occurrence of 
spontaneous emission of acoustic waves from an ionizing shock. Thus, for waves with 
w which is much larger than the upper limit set by (4.2a), the kinetics of the electrons 
can be ignored and the waves propagate in effectively a perfect gas. As is well known, 
under such circumstances the shock is stable. On the other hand, if w is much smaller 
than the limit set by condition (4.2b), ST, = ST and the acoustic waves propagate in an 
effectively single gas in which the electrons and the heavy particles are in local 
thermodynamic equilibrium. As will be shown later, this limit also results in an ionizing 
shock that is stable for spontaneous emission of sound. 

Condition ( 4 . 2 ~ )  results in the quasi-neutrality of the plasma, namely Ian, - SnJ < 
ISnJ, where Sn, and an, are the perturbations of the concentrations of the electrons and 
the ions, respectively. The Maxwellian relaxation time is given by 

where e,, is the absolute dielectric permittivity and CT is the electric conductivity of the 
plasma in equilibrium. 

Condition (4.2d) means that during the period of the acoustic oscillations an 
electron undergoes many collisions with the heavy particles, so that the inertial terms 
in the electron momentum equation may be neglected. Usually this condition is 
satisfied in a collisional plasma behind the shock. 

Discussion of condition (4.2e) is deferred to the next subsection where it will be used. 
A numerical example of the various limits in (4.2) is given in $6. 

Under conditions (4.2) the system of equations describing the perturbations of the 
electrons’ variables is given, after linearization, by conservation of the total number of 
free and bounded electrons 

the momentum equation 

the energy equation 
- VSp, +me v, n,(S V -  SV, )  + en, SE = 0, (4.6) 

= - p e V . 6 V ~ - I S r i , - ~ v e n , ~ k ( S T , - S T ) .  2m (4.7) 

ma 

In these equations Sd, is the perturbation of the source term in the rate equation for 
the electron concentration, e < 0 is the electron charge and SE is the perturbation of 
the electric field. Although the perturbation of the electric charge density created by an 
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acoustic wave does not vanish identically (as well as the electric field perturbation SE), 
we can replace Sn, by Sn, in the linearized equations, when necessary, as a result of 
assumption (4.2~).  

Before continuing, we notice that since w is assumed to be much less than the 
effective frequency of momentum transfer between ions and atoms we may set Sy = 
SV, .  Furthermore, as a result of the latter equality and of condition (4 .2~)  the 
conservation law for the electric charge is given by 

0-sj = V.en,(SV,-sy) = 0. 
As a result we obtain 

V.SV, = v.sv,. 
We assume that in region 2 the ionization takes place due to the electron-atom 

collisions, while the recombination is due to the triple electron-electron-ion collisions, 
so that the direct and inverse processes are represented as 

e + a t ,  2e+i. 

The nonlinear source term fie within the framework of such an assumption has the 
following form (Mitchner & Kruger 1973): 

fie = Vionne-Kre,nEni ,  (4.9) 

where vion is the effective ionization frequency and K , , ~  is the triple recombination 
coefficient. In the equilibrium state the right-hand side of (4.9) is zero. The ratio vion/p 
as well as K,,, are functions of T,. Therefore, the perturbation Sfze can be written as 

The right-hand side of (4.10) is of the order of 

(4.10) 

(4.11) 

Here (an,/aT,>,, is the derivative of the electron density, n,( T,, p), as determined by the 
Saha equation with respect to T, = T. Estimate (4.11) is valid under condition (4 .2~) .  

Assuming that condition ( 4 . 2 ~ )  is valid, we can neglect the perturbation of the 
energy loss due to elastic collisions (the third term on the right-hand side of (4.7)) as 
compared with the energy loss by ionization (the second term on the right-hand side 
of (4.7)) when the following inequality is satisfied: 

(4.12) 

The equations that describe the perturbations in the heavy-particles gas are 

(;+ v.v)sp+pv.av= 0, (4.13) 

(4.14) 

(;+ v. v) [p,-ip] SP, 5 S P  = 0. (4.15) 
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Here Sp, = Spa + Sp, is the pressure perturbation and SV = Sy = S V ,  is the velocity 
perturbation in the heavy-particles gas. The perturbation of electron pressure Sp, 
appears in the momentum equation for heavy particles (4.14) as a result of eliminating 
the electric field perturbation from the momentum equation for the electrons (4.6) and 
the momentum equation for ions. The latter has the form 

mini -+ KqV SK = -VSpi-eniSE-m,v,,n,(S~-SV,) 

= - V(Spi + Sp,) + me v,, n,(SV, - SV,).  (4.16) 

Here v,, and v,, are the effective frequencies of the electron-ion and electron-atom 
collisions, respectively, so that v, = v,, + vea. The perturbed momentum equation for 
neutral atoms is 

(:t 1 

mana -+ V,.V S V ,  = -VSp,-m,neu,,(SV,-6V,). (4.17) 

Equation (4.14) represents the sum of two equations, (4.16) and (4.17), while in 

( i t  1 
obtaining this sum the equalities 

were used. 

rewritten as 

v, = v,,+ v,,, mi = ma, n, = n,, K = V,  = V 

Finally, using (4.7), (4.8), (4.12) and (4.13) the energy equation for electrons can be 

(i + V -  v)  [ g8pe + ISn, - (3, + In,) - = 0. (4.18) 

We are now ready to modify equation (4.1) such that the electrons' kinetics is taken 

"1 P 

into account. To this end we start with (4.18) which yields 

5 21 Sp 2ISn 
(3 3kT) p 3kTn, 

6% -+- --e (4.19) 

As follows from the definitions of the degree of ionization a = n,/(n, + ni) and the gas 
density p = ma(na+n,), 

(4.20) an, -  sf^) Sp I 6" . 
ne @P P a 

In addition, the following relations will be used : 

(4.21) 

- ape -S@aT,) - ~ - S P  - -+-+--, ST, 
P e  PUT, P a T 

- 6a - _  
a 

It should be noted that in obtaining equation (4.21) it has been assumed that 01 depends 
on the electron temperature. This assumption stems from the fact that for sufficiently 
high degrees of ionization in the region behind the shock (a > 10-3-10-2) the dominant 
ionization mechanism is the electron-atom collision. Since condition ( 4 . 2 ~ )  is satisfied, 
the logarithmic derivatives in (4.21) should be calculated for the equilibrium 
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dependence a(T,p) determined by the Saha equation (3.6). Elimination of the 
quantities Sne/n,, &/a, and STJT from the system of relations (4.19)-(4.21) results in 
the following relationship: 

21 5 , z=-=- 
P ,  P 3(z, + 1) + zaT kT 8' 
!!&?=A!!!, A =  (5 + Z )  (aT + 1) - zEP 

As a result of (4.15) and condition (4.2b) the adiabatic equation with y = g, 

' P H  = 58P 
P H  3 P '  

(4.22) 

(4.23) 

may be used for the perturbations of density and pressure created by an acoustic wave 
in the gas of atoms and ions. However, the analogous conclusion is not true for the 
equation that connects Sp with the total pressure perturbation Sp and determines both 
sound velocity and the effective adiabatic index ye f f .  Taking into account the relations 
p ,  = a p / (  1 +a), p H  = p / ( l  +a) and Sp = 6pe + SpH, we obtain from (4.22) and (4.23) 
the following relationship : 

(4.24) 

where A is defined in (4.22). 

4.2. The rejection coeficient for  acoustic waves from ionizing shocks 
We now return to the concept of ionizing shock developed in 92 and consider the 
reflection of acoustic waves from such a shock. An acoustic wave, which propagates 
in region 2 behind the relaxation zone, is described by the closed system of equations 
(4.13), (4.14) and (4.24). This system represents the equations of acoustics of a moving 
uniform medium, in which the sound velocity is determined as 

cz = (YeffPz/Pz)liz. (4.25) 

Therefore, the Mach number M ,  entering in the formulae of 92 will be defined by the 
expression 

Pz v," (4.26) 

The definition of the parameter h given in (2.14) also should be modified for the 
following reason. In order to derive the reflection coefficient 92, the jump conditions 
between the variables on both sides of the shock should be used. For steady state, the 
jump conditions are given by (3.8) and (3.9) and can be written symbolically as 

Pz = F ( P z ;  P P P J  (4.27) 

For classic gasdynamic shocks, for which ionization is practically zero, taking into 

(4.28) 

= Y e f f b z ,  ~ , ) p z '  

account that the perturbations on the supersonic side of the shock are zero yields 

Pz + SPZ = 9 ( P z  + SPz; P I ,  P A  

which after linearization results in 

(4.29) 



140 M .  Mond and I. M .  Rutkevich 

The reason why the steady-state relationships can be used also for the perturbed 
state, (4.28), lies in the fact that within the diminishingly small shock width, the spatial 
gradients are arbitrary large, hence the time derivatives can be neglected in the 
conservation equations. 

For strong shocks, however, the spatial gradients within the relaxation zone (which 
in our model is equivalent to the shock width) are finite. Hence, the steady-state 
relations across the shock (i.e. across the relaxation zone) can be used for the perturbed 
state only when the frequency is small enough, according to condition (4.2e). 

Generalizing (4.29) to the case of ionizing shocks, it is now given by 

(4.30) 

For calculating the quantity da/6p, we make of use (4.19)-(4.21), which result in the 
expression 

(4.3 1) 
6P2 P2 5(1 +ET)(l +$A) ’ 

Here, Ep,ccT and A are defined in (4.21) and (4.22), respectively, and calculated at 

601 Ba 3( 1 + a)  [a,, + ET(A - l)] , B =  - 

p = p z , T =  &. 
Thus, a new definition of the parameter h is obtained as follows: 

(4.32) 

As before, the general expression for the reflection coefficient has the form (2.13) 
with the distinction that the quantities c2, M ,  and h now are determined by the relations 
(4.25), (4.26) and (4.32), respectively. Therefore, the critical value of the parameter 
h = h, is determined by (2.16), in which the Mach number M ,  is calculated in 
accordance with (4.26). 

5. Spontaneous emission of sound from ionizing shocks : numerical results 
Numerical calculations of the parameters h and h, determined by (4.32) and (2.16) 

with allowance for (4.26) were carried out for different monatomic gases at different 
initial pressures. An equation of the form of (3.9) was used for the ionizing shock 
adiabatic. Examples of such calculations for an ionizing shock in argon are shown in 
figures 6 and 7. As is seen from these figures, there is a threshold with respect to the 
shock Mach number M I ,  beyond which the condition for spontaneous emission 
h > h, is satisfied. This theoretical result is in good agreement with the experiments of 
Glass & Liu (1978) with argon, and Glass et al. (1977) with krypton, in which 
the development of instabilities accompanied by oscillations of the gas density was 
observed. Glass et al. also studied the influence of small hydrogen impurities on the 
structure of the relaxation zone and the perturbations behind the shock. We do not 
comment here on the effects of impurities since their inclusion in the kinetic model is 
outside the framework of the present paper. The focus of our attention is on the 
experimental results for pure gases. 

The occurrence of instabilities in pure argon and krypton has been observed for 
sufficiently high values of M I .  In the experiments of Glass et al. the concentration of 
electrons and the gas density throughout the flow were determined by using a 
Mach-Zehnder interferometer with a ruby laser light source. The shock wave velocity 
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and the pressure measurements through the shock wave were performed by means of 
pressure transducers located at several positions along the hypervelocity shock tube. 
An oscillating structure of the flow downstream of the shock wave front was seen from 
interferograms for supercritical values of M,. Thus, in argon at p ,  = 5 Torr, = 
300 K the instabilities appeared for M ,  2- 14.7. As can be seen from figure 7, the 
threshold of spontaneous emission obtained in our calculations is M ,  = M ,  = 15. This 
comparison indicates that the present theoretical model is in good quantitative 
agreement with experiment. 

According to the numerical calculations, spontaneous emission occurs in a finite (but 
suficiently wide) interval of the shock Mach number values: M ,  < M ,  < M * .  This 
interval expands if the initial density of the gas ahead of the shock is decreased. Thus, 
for argon at & = 300 K, the boundaries of the region of spontaneous emission on the 
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M,-axis are given by M ,  = 15, M* = 26.6 and M ,  = 13.8, M* = 27.3 for p 1  = 5 Torr 
and 1 Torr, respectively. The existence of an upper boundary for spontaneous 
emission, M ,  = M * ,  was not observed experimentally: the maximal value of the shock 
Mach number presented in Glass & Liu (1978) is 17.7, which is within the theoretical 
range of spontaneous emission. 

It also should be noted that in all our calculations the values of parameter h were 
inside the interval (- 1, l), so that Dyakov’s conditions of corrugation instability was 
never reached. 

6. Discussion 
In this paper the frequency-dependent coefficient of reflection 9 of two-dimensional 

acoustic waves from a plane shock was considered as an appropriate tool for analysing 
the stability of shock waves. Expression (2.13) determining 93 as an explicit function 
of the ratio w/k ,  and the parameters M ,  and h gives the simplest form of representation 
of the reflection coefficient. This form can be employed in the analysis of the various 
boundary-value problems connected with the reflection of sound waves from shocks. 

Expression (2.13) is rigorous in the framework of a single-fluid description of 
acoustic waves in a spatially uniform flow behind the shock. For non-uniform flows, 
the expression obtained is valid within the WKB-approximation, i.e. for short waves 
satisfying the condition Ik,l I 9 1, where I is the characteristic length of the variation of 
the flow parameters. The same formula may be applied to the reflection of a short 
acoustic wave from a shock with a finite radius of curvature. Such an approach was 
employed in the consideration of the reflection of sound waves propagating in a plane 
spiral flow behind the cylindric shock wave (Rutkevich & Mond 1992). 

We have demonstrated in $2 the usefulness of the representation (2.13) in deriving 
the conditions for spontaneous emission and for corrugation instability. The 
occurrence of the latter was interpreted as the condition of resonant reflection 
(B = co) for a special class of acoustic waves decaying in space. 

The model of a non-monotonic ionizing shock adiabatic developed in $3 describes 
only the principal mechanism for the energy losses in the relaxation zone, namely the 
thermal ionization of the neutral atoms. The dependent q(P) would be calculated with 
better accuracy if the loss of energy by radiation and excitation of the electron levels 
of the atoms were included in the model. At the same time, we found that the values 
of the degree of ionization calculated from the system of equations (3.8) and (3.9) are 
in a good agreement with experimental data. Thus, for argon at & = 300 K, p 1  = 

5 Torr and M ,  = 16.1 we obtained a = 0.15. Under these condition, the same value of 
a was measured by Glass & Liu (1978) immediately behind the relaxation zone. 
Further slow decrease of a downstream, which was observed in that experiment, was 
neglected in our model. 

More serious restrictions of the present model exist in the range of high temperatures 
kT, 2 0. llcorresponding to the descending section of the shock adiabatic, since in this 
range of temperatures the energy losses by the ionization of multi-charged ions 
influence the qualitative behaviour of q(P). Such a multiple ionization may result in the 
appearance of a sequence of maxima of the function q(P). Nevertheless, the increasing 
section of the shock adiabatic will be described satisfactorily by the single-ionization 
model due to the condition 

( W I )  exp K-Z,)/k&l 1, 

where I2 is the second ionization potential. 
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Analysis of acoustic perturbations superimposed on the equilibrium flow behind the 
relaxation zone can be applied to various problems associated with the acoustics of 
partially ionized plasmas created behind ionizing shocks that propagate in monatomic 
gases. This analysis has shown that there is a range of acoustic frequencies w in which 
the relative perturbations of the electron gas density and temperature are much less 
than the analogous perturbations of the heavy-particle gas parameters, i.e. 

(6.1 a, b) 

According to (4.18), which expresses the balance of the electron energy in the 
perturbed state, such a balance is held if 6p/p is of the order of 6ne/ne since z = 2I/kT 
is a large parameter. Then, from (4.20) and (4.22), in the limit z % 1 we obtain 

The equilibrium degree of ionization a( T,, p) is very sensitive to small variations of 
the electron temperature due to the inequality 

E T z + z %  1. (6.3) 

Taking into account (6.3) and the relation 6p/p z 3ST/2T, which is fulfilled for the 
acoustic wave, we obtain (6.1 b) from the relation (6.2). 

Conditions (6.1) and (6.3) are of crucial significance for the occurrence of 
spontaneous acoustic emission. To see this point we start with the asymptotic 
expressions for perturbations in the limit z % 1 that may be obtained from (4.19)-(4.21) 
and from the relations gT z i z ,  a,, z - (for a < 1) : 

In the same limit z % 1, the quantities A ,  ye f f  and B entering (4.24)-(4.26), (4.31) have 
the form 

18(1 +a) , B z  
8 5 + 3 4  1 + 8 / z )  

3(1 +a) z(5 + 3a) ’ 
A z l+;, y e f f z  (6.5~-C) 

In order to understand why spontaneous emission may occur on the increasing 
section of the shock adiabatic we consider the variations of the parameters h and h, 
when the shock Mach number M ,  increases. 

For sufficiently small intensity of the shock both h and h, are negative like in the case 
of a perfect gas. At MI z 10, the parameter h, vanishes and becomes positive for larger 
values of MI (see figure 6). This behaviour of h, is explained as follows. Using (2.16), 
(3.2) and (4.26), we can present h, in the form 

In the region M I  > 5 ,  the inequality P % 7 holds, so that the sign of h, is determined 
by the sign of (yerf-  1) 7 - ( y e f f +  1). As follows from (6.5b), the value yeff  is close to 
5 when a 6 1. Therefore, h,  should be positive when 7 slightly exceeds the value 7 = 
4 corresponding to maximal degree of compression in a perfect gas with y = 5. As is 
seen from figure 6, it occurs at MI = 10. 
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Now consider the expression (4.32) for the parameter h. As follows from the shock 
adiabatic equation (3.9), the partial derivatives entering the right-hand side of (4.32) 
are determined by 

According to (6.5c), the quantity B is small when a 4 1. Therefore, the term 
containing the first of the two derivatives in (6.7) dominates in the right-hand side of 
(4.32). This first term changes sign from negative to positive when the ionization degree 
a exceeds the value 15/4< 4 1. Thus, h still becomes positive on the rising section of the 
shock adiabatic approximately in the same region of the M ,  values where the 
parameter he becomes positive. The competition between these two parameters may 
lead to the situation where h becomes larger than he and the region of spontaneous 
emission occurs on the Ml-axis as shown in figures 6 and 7. 

In order to show that the assumptions of $4 can be satisfied we consider the 
following example. Let an ionizing shock propagate in argon at M, = 16.5, p1 = 

5 Torr, and = 300 K. For such a shock the calculated values of the parameters 
entering into the criterion of spontaneous emission and in inequalities (4.2) and (4.12) 
are 

z = 2I/kT, x 28, M ,  E 0.45, h E 0.12 > h,, 

2u,,, 106 SKI, v, E 8 x 104 s-1, 7 M  2 x 10-11 S-1, v, x 2 x 1010 S-1, 

VJdx lo6 s-l. 

Inequality (4.12) is satisfied since its right-hand side is of order of To fulfil the set 
of conditions (4.2) we can assume that 0) E (2-4) x lo5 s-'. 

The density perturbations behind the relaxation zone are transferred away from the 
ionizing shock by two spontaneously emitted waves : the downstream acoustic wave 
and the entropy wave. The ratio of the amplitudes of density perturbations for these 
two waves is determined by 

Sp'"/Sp+ = - 1 - hMi2 .  (6.8) 

In the example given above, 1 + h M i 2  x 1.6 ; therefore, the density perturbation in the 
entropy wave dp(') prevails over &p+. In addition, the spatial period L(') of oscillations 
Sp(') is considerably smaller than the wavelength L+ of the acoustic oscillations. Thus, 
for rl)  = 3 x lo5 s-' the wavelength of the entropy-vortex perturbation is L(') x 2 cm, 
while L+ x 8 cm. These estimates allow us to suggest that the gas density oscillations 
observed by Glass & Liu (1978) represent spontaneously emitted entropy waves rather 
than acoustic ones. 

In the limit of low frequencies w satisfying the condition 

3m, u, a 
w<<- 

ma 'T  

the difference between the electron temperature and heavy-particle temperature 
perturbations cannot be supported any longer over the period of oscillations. Under 
condition (6.9), one can assume S q  = ST, and the parameter h takes the classic form 
given in (2.14), while the derivative (i3p,/t$~,)~,, is calculated in accordance with the 
equation of the ionizing shock adiabatic (3.9). As a result, the coefficient B in (4.32) will 
not be that given by (4.31). This new coefficient B = Be, is determined as 

Be, = (d In a/d In P,),,, p ;  (6.10) 
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FIGURE 8. Quasi-stationary dependencies h(P) (-) and h,(P) (-.-) calculated under the 
assumption 6T, = ST for an ionizing shock in argon with T, = 300 K, p 1  = 55 Torr. 

The derivative in (6.10) is taken along the equilibrium shock adiabatic. The quantity 
ye f f  also differs from the previous one given by (4.24) and now is determined as 

5[1 +CX+;Z(E,-E,- l).] 
Yef f  = 3 ( 1 + a ! + & , a )  

(6.1 1) 

Unlike the coefficient B in the non-equilibrium model, the quantity Be, is not small. 
The parameter h cannot change sign on the increasing section of the shock adiabatic 
because it is just proportional to the total derivative dp,/dp, along 7 = q(P) given by 

The typical behaviour of h(P) and h,(P) in the equilibrium case is presented in figure 
8, which shows that within the equilibrium model with ST, = 6T the difference h - h, is 
negative. Therefore, the ionizing shock should be stable to low-frequency per- 
turbations. The range in which the stability can be guaranteed depends on the initial 
conditions and on the Mach number M,. Thus, for M ,  = 16.5, p 1  = 5 Torr, and 
TI = 300 K, the resonance reflection of acoustic waves cannot take place in the range 
w < 1000 s-’. For a given value of w condition (6.9) may be reached by raising the 
collision frequency v, by means of raising the initial pressure. 

In the limit of high-frequency waves, for which vion 4 o < ve, the kinetics of 
ionization does not influence the acoustic waves, and the latter are propagating in a 
plasma as in a regular gas. An incident acoustic wave passes the relaxation zone and 
reflects from the gasdynamic shock with reflection coefficient (.B?)i < 1. Therefore, in the 
high-frequency limit the spontaneous emission should disappear again. Thus, the 
frequencies of waves that can be spontaneously emitted by strong ionizing shocks are 
bounded both from below and above. 

(3.9). 
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